Turnout Design: Wheel/Rail Contact, Kinematic Geometry and Maintenance

David D. Davis

Manager, Vehicle – Track Interaction

Presentation Outline

- Progress on performance metrics
 - Safety, Reliability, Efficiency, Capacity

Technical progress

- Alignment Design
- Running Surface Profiles
- Transitions
- Maintenance
- Future work

2

/RI 2019

High Performance Special Trackwork

Problem definition:

- Special trackwork costs more than \$1B/year
- Maintenance and train delay more than half of total costs
- Dynamic load-sensitive components
- Frog & switch point lives increasing
 - Still less than half of that of surrounding rail
- Fatigue failures still significant
- Running surface profile maintenance increasing

Distribution of Special Trackwork Costs

Source: TTCI analysis of R-1 data

WRI 2019

HEAVY HAUL SEMINAR . JUNE 20 - 21, 2019

HAL Key Track Technology Enablers

- HAL special trackwork performance (1980 2010)
- Improved service lives (from AAR Project audit)
 - Turnout life: 500 MGT 2,000 MGT
 - Frog Life: 100 MGT 500 MGT
 - Diamond Life: 10 MGT 100 MGT

Reduced accident rates (TTCI analysis of FRA safety database)

- Rate reduction: 88% Reduction since 1980
- Rank amongst track causes: 3rd 3rd
- Reduced turnout maintenance (FAST experience)
 - Labor hours per MGT:
 - 2.07 hrs/MGT 1980s
 - 0.58 hrs/MGT today

77% reduction

HEAVY HAUL SEMINAR . JUNE 20 - 21, 2019

HAL Key Track Technology Enablers

- HAL special trackwork performance (1980 2010)
- Reduced accident rates (TTCI analysis of FRA safety database Class 1 railroads)
 - Rate reduction: 88% reduction since 1980

HAL Key Track Technology Enablers

Subtle, but significant changes.

HEAVY HAUL SEMINAR . JUNE 20 - 21, 2019

Improved Special Trackwork

- Areas of Improvement
 - Alignment Design*
 - Compromise between dynamic performance and service life
 - Running Surface Profile Design*
 - Make profiles near conformal
 - Transitions
 - Track structure change effects can be minimized*
 - Maintenance
 - Accessibility to minimize track time

*We have the design tools to make significant improvements

Track Layout "101"

Turnout Layout "101"

Alignment Design: Smoothing Alignments

- Under current allowable speed rule:
 - Maximize closure curve radius
 - High entry angle and forces near point of switch
- Proposed:
 - Balance entry and curving forces
 - Pseudo-tangential
 - Double spiral
 - Add elevation to compensate for smal radius curve
 - Modify cant deficiency rule

10

7**RI** 20019

Turnout Geometry Design: North American Benchmarking

- Comparison of #20 turnout alignments for predicted dynamic loads
 - study assumed a fixed turnout length 47.5 m (156 ft.)
 - AREMA style (non-tangential) alignment
 - Large entry angle, circular curves
 - Pseudo-tangential (low entry angle) alignment
 - Straight cut, circular curves
 - Tangential spiral alignment
 Spiral to spiral
 - Entry angle closure curve radius trade-off

HEAVY HAUL SEMINAR • JUNE 20 - 21, 2019

11

Turnout Geometry Design: North American Benchmarking

- Comparison of #20 turnout alignments for predicted dynamic loads — study assumed a fixed turnout
 - length 47.5 m (156 ft.)
 - AREMA style alignment
 - Pseudo tangential (low entry angle) alignment
 - Tangential spiral alignment
 - Predicted dynamic performance (NUCARS[®])

12

Optimized Turnout Alignment – Findings

- Minimize maximum lateral forces and life cycle costs
 - Entry angle: significant effect
 - Pseudo-tangential alignments will provide significant benefit without lengthening switch
- Diverging alignment: spirals important for reducing accelerations
- Super elevation: minimal effect
 on net lateral forces. Will raise
 allowable speed under current rule by ~5-10 mph
- Running surface profiles: Smooth transitions are critical

Switch Point Profile Design and Testing

14

Vew

noint

Measured worn

less than 100 MG

Findings

- Point profiles play significant role in formation of rolling contact fatigue (RCF)
- Point wear concentrated at the gage corner
- Severe RCF defects generally first formed within the top cut section at gage corner
- Switch points show greater RCF than the matching stock rails

New Switch Point Profile Design and Testing

Tests

- Two switch point profiles redesigned to improve contact conditions with anticipated reduced
 - Surface damage
 - Wear
 - Plastic flow at rail gage
- TTCI, railroads, and one supplier to build and test prototype switch point rail profile designs
 - Prototype and base to be located on same line to assure similar traffic environments for comparison

Simplify the machining process Utilize an existing tool

15

Prototype Switch Points in Revenue Service

BNSF – Marceline, MO

Union Pacific – Bonner Springs, KS

HEAVY HAUL SEMINAR . JUNE 20 - 21, 2019

WRI 2019

Comparison of New and Worn Switch Point Rail Profile Straight points @ 13 feet from p.o.s.

HEAVY HAUL SEMINAR . JUNE 20 - 21, 2019

New Switch Point Profile Design and Testing Key Findings: Initial performance of Prototype Switch Point Profiles looks promising

Standard Straight Point

Contact centered

Running Surface Appearance Standard and Prototype Straight, @ 14 and 15 ft from p.o.s.

Standard point – RCF present

Prototype point – no RCF

New Switch Point Profile Design and Testing

Conclusions

- Simplified profile working as intended
 - Care should be taken to orient 1 inch radius to match canted rail
 - Significant reduction in wear (>50%)
 - Less RCF forming
- Prototypes closer to design performing better
- Study whether 3 radius design is feasible
 - 3 radius design was adopted by most railroads

Optimize Vertical Turnout Stiffness

21

WRI 20019

- Objectives: Test prototype turnout foundations to reduce stiffness changes, dynamic loads and settlement
 - Proof of concept test
 - Timber ties and under-tie pads

HAUL SEMINAR .

- FAST test began 2013:
 - Canadian Pacific RR #20 Turnout with Pads 1 and 2

track

JUNE 20 - 21, 2019

damping

Turnout Foundation Test

Description of Test

- Vertical stiffness variations due to longer ties, platework and extra rails in turnouts
- Under-tie pads installed in turnout
 - Uniform stiffness 200,000 250,000 lbs./in.

#20 Turnouts Stiffness measured at FAST HTL – No pads

#20 Turnout With Under-tie Pads

WRI 20019

#20 Timber Tie Turnouts with RBM Frogs

HEAVY HAUL SEMINAR • JUNE 20 - 21, 2019

Turnout Foundation Test

Preliminary Results

- Uniform stiffness 200,000 250,000 lbs./in.
- Reduction in settlement by ~33%
- More uniform settlement

WRI 2**0**19

HEAVY HAUL SEMINAR . JUNE 20 - 21, 2019

Optimize Lateral Stiffness of Switch

- Traditionally, lateral stiffness in switch is made as high as practicable
 - Safety
 - Creates a "hard spot" in the track
- Dynamic simulations show that there is an effect of lateral stiffness on maximum forces
 - An optimal range of lateral stiffness may exist where forces are lower and safety is not compromised
 - Contact occurs later in switch (switch point is thicker)
 - Empty car forces should also be reduced

WRI 20019

Optimize Lateral Stiffness of Switch

FAST Testing

- Effects of Lateral Stop Stiffness on Turnout Forces Preliminary Conclusions:
 - Lateral stiffness of switch point stop can reduce facing point lateral forces 10-15%
 - Relatively low-cost modification can make a marginal improvement in performance
 - Turnout footprint is often a rigid constraint
 - Can be applied to large entry angle switches

HEAVY HAUL SEMINAR . JUNE 20 - 21, 2019

2019

Compliant Switch Evaluation

FAST Testing

- Effects of Lateral Stop
 Stiffness on
 Turnout Forces
 - Six variations of switch point stops
 - Quantify lateral forces, L/V ratios, and rail displacements

Stop #1

High Web and Base Lateral Displacement Transducers at Stop #2, 15 ties away from the switch point

Stop #3

Compliant Switch Evaluation

FAST Testing:

Lateral Stops Evaluated (2 of 6):

Spring Stop: D Bar contact

Compliant Switch Evaluation FAST Testing

Effects of Lateral Stop Stiffness on Turnout Forces

• Six variations of switch point stops

WRI 2019

STW – Advanced Designs & Materials

- Key findings: Turnout maintenance under HAL
- Comparison of FAST maintenance effort 1980s to today
 - Significant improvement in Labor Hours/ MGT

FAST Turnout	Turnout Maintenance (hr/MGT)	Component Replacement (hr/MGT)	Total Maint & Replacement (hr/MGT)
1980s T.O.	1.42	0.65	2.07
1990s T.O.	0.85	0.19	1.04
2000 AREMA T.O.	0.55	0.07*	0.63
2010 T.O.s	0.33	0.27	0.60

* Major component failure shortened turnout life and reduced component replacements

STW – Advanced Designs & Materials

• Key Findings: Turnout Maintenance under HAL

- Biggest decrease in Turnout Maintenance hours
 - All fasteners accessible from the top (e.g. capture blocks)
 - Initial worn shapes reduce initial grinding required
 - Better dynamic performance has extended component life
- General trend: running surface maintenance is taking a larger share of total maintenance
 - Other maintenance is decreasing due to lower dynamic loads

Turnout Design

Future Work:

- Vertical switches
 - For low volume, low speed diverging traffic
 - –Eliminate running surface discontinuities for mainline route
- Frog materials
 - -Reduce metal flow and fatigue cracking
 - -Needed to improve Flange Bearing Frogs economics

Turnout Design

Future Work (2):

- Rail running in turnouts
 - -Better handling of rail longitudinal forces
- Switch point fatigue
 - -Redesign switch point- stock rail interface
 - »Stock rail flow and switch point twist create adverse contact

Future Work: Prevent Switch Point Chipping

Stock Rail Flow Leads to Switch Point Chipping

HEAVY HAUL SEMINAR . JUNE 20 - 21, 2019

Switch Failure Modes Analysis

- Key Findings: Stock Rail/ Switch Point fit should be more robust
- Field survey
 - Common height for chipped out points indicates stock rail flow contact

34

WRI 20019

TTCI Special Trackwork Team

- Ben Bakkum
- Duane Otter
- Steve Wilk
- Bea Rael

- Xinggao Shu
- Charity Duran
- Don Guillen
- Rafael Jimenez
- Joseph LoPresti
 Dave Davis

Thank you for your kind attention